

Ex a t

(10)

der

chi

at a p Th tha

cri

(Ti

be

рu

pre

Val

sh

th tie

111

 e^{i}

1

11

d

ir

Fig. 2. Current–voltage characteristics of Al–I–In samples at different pressures. $T=(1.17\pm0.02)\,^{\circ}\mathrm{K}$; normalized units are along the I-axis

Fig. 3. d I/dU-U characteristics of Al-I-In samples at different pressures. $T=(1.16\pm0.02)~{\rm ^{\circ}K}$

where the error does not include the inaccuracy in pressure measurement. Such $T_{\rm c}$ change of In films with pressure excellently coincides with Berman. Brandt, and Ginzburg's measurements [10] on massive indium.

Fig. 2 shows voltage-current characteristics for two Al-I-In samples plotted at different pressures. The energy gap was defined from the maxima of the (dI/dU)-U characteristics (Fig. 3).

Fig. 4 shows the result of high pressure influence on the energy gap of indium. For comparison the $2 \Delta(p) = 3.69 \ kT_c$ line is drawn which in fact corresponds to the critical temperature change. The gap values obtained by extrapolating $2\Delta(T)$ to T=0 °K are also included in Table 1. From experiments it is found

$$rac{{
m d}\,2\,\it \Delta}{{
m d}p} = -\,$$
 (1.43 $\pm\,$ 0.13) $imes$ 10⁻⁵ $rac{{
m meV}}{{
m atm}}$.

The energy gap of In at zero pressure, $2 \Delta(0.0) = (3.69 \pm 0.04) \, kT_{\rm c}$, is in good agreement with data obtained from precision measurements of critical field

curves [11], where the coefficient defining a deviation from the parabola was found to be

P(katm) --

$$a_{\rm In} = 2 \pi \gamma \frac{T_{\rm c}^2}{H_0^2} = 0.985$$
 (3)

where

$$\gamma = \frac{2}{3} \pi^2 \, k^2 \, N \,. \tag{4}$$

Fig. 4. Change of the superconducting indium energy gap under pressure. • experimental points